Skip to contents

The basic_locality_clean() function cleans locality by removing missing or impossible coordinates and correcting precision. This function requires columns named 'latitude' and 'longitude'. These columns should be of type 'numeric'.

Usage

basic_locality_clean(
  df,
  latitude = "latitude",
  longitude = "longitude",
  remove.zero = TRUE,
  precision = TRUE,
  digits = 2,
  remove.skewed = TRUE,
  info.withheld = "informationWithheld"
)

Arguments

df

Data frame of occurrence records returned from gators_download().

latitude

Default = "latitude". The name of the latitude column in the data frame.

longitude

Default = "longitude". The name of the longitude column in the data frame.

remove.zero

Default = TRUE. Indicates that points at (0.00, 0.00) should be removed.

precision

Default = TRUE. Indicates that coordinates should be rounded to match the coordinate uncertainty.

digits

Default = 2. Indicates digits to round coordinates to when precision = TRUE.

remove.skewed

Default = TRUE. Utilizes the remove_skewed() function to remove skewed coordinate values.

info.withheld

Default = "informationWithheld". The name of the information withheld column in the data frame.

Value

Return data frame with specimen removed that had missing or improper coordinate values. Information about the columns in the returned data frame can be found in the documentation for gators_download().

Details

This function removes any records with missing coordinates, impossible coordinates, coordinates at (0,0), and any that are flagged as skewed. These skewed records are identified with the remove_skewed() function which identifies rows where the ‘InformationWitheld’ column includes the string "Coordinate uncertainty increased". We also provide the option to round the provided latitude and longitude values to a specified number of decimal places. This function requires no additional packages.

Examples

cleaned_data <- basic_locality_clean(data)